PRISM/PRIME

the Advanced Muon Beam and the Experiment Searching for μ -e Conversion with 10⁻¹⁸ Sensitivity

Masaharu Aoki Osaka University, Japan

On behalf of the PRISM Collaboration

PANIC'05 Santa Fe, 24-28 October, 2005

Contents

- Muon Lepton Flavor Violation (μ-LFV)
- $\mu \rightarrow e \gamma$ Decay and μ -e Conversion
- PRISM
- PRIME
- Conclusion

Muon LFV

- Charged leptons do mix via v oscillation.
- However, it is very weak for charged leptons due to GIM-like mechanism.

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \sum_{i} \left| U_{\mu i} U_{ei}^* \frac{m_{\nu_i}^2}{M_W^2} \right|^2 \simeq 10^{-60} \left(\frac{m_{\nu}}{10^{-2} \,\text{eV}} \right)^4$$

• Thus, observation of μ -e transition immediately indicates physics beyond the Standard Model of particle physics.

SUSY and slepton mixing

Large top Yukawa couplings result in sizable off-diagonal components in a slepton mass matrix through radiative corrections, and that implies observable levels of LFV in some models of SUSY-GUT Barbieri and Hall, 1994

Charged LFV

The second of the

SUSY-GUT & SUSY Seesaw Prediction

Process	Current Limit	SUSY-GUT level
$\mu N \rightarrow e N$	10 ⁻¹³	10 ⁻¹⁶
$\mu \rightarrow e \gamma$	10-11	10 ⁻¹⁴
$\tau \rightarrow \mu \gamma$	10 ⁻⁶	10 ⁻⁹

μ-e Conversion Process

Muonic Atom (1S state)

$$\mu^{-} + (A,Z) \rightarrow \nu_{\mu} + (A,Z-1)$$
Muon Decay in Orbit
$$\mu^{-} \rightarrow e^{-}\nu\overline{\nu}$$

$$\mu^{-} \leftarrow Conversion$$

$$\mu^{-}(A,Z) \rightarrow e^{-} + (A,Z)$$
(coton Flavor)

- Coherent Process
- Emission of mono-energetic electron $E_{max} = (M_{\mu} B_{\mu}) \text{ MeV } (\sim 105 \text{ MeV})$
- $R_{\mu e} \equiv \Gamma(\mu N \rightarrow e N) / \Gamma(\mu N \rightarrow v_{\mu} N(Z-1))$

Physics in μ -e Conversion

- SUSY-GUT
- SUSY Seesaw
 - BR ~ 10⁻¹⁵
- Doubly Charged Higgs Boson

- Logarithmic enhancement in a loop diagram for μ -N \rightarrow e-N, not for $\mu \rightarrow e \gamma$
- Λ ~ 1 PeV for PRISM/PRIME
 - M. Raidal and A. Santamaria, PLB 421

(1998) 250 > 3000 TeV

SUSY with R-parity Violation

- $|\lambda'_{211}\lambda_{212}| < 6 \times 10^{-12}$ for PRISM/PRIME
- Faessler et al., NPB 587 (2000) 25-44
- Leptquarks
- Heavy Z'
 - MZ' > (5-100) TeV for $R_{ue} \sim 10^{-16}$
 - J. Bernabeu et al., NPB 409 (1993)69-86
- Compositeness
- Multi-Higgs Models

η_α:model dependent combination of couplings, mixings, etc.

$\mu N \rightarrow e^- N vs. \mu \rightarrow e \gamma$

- $\mu N \rightarrow e N$ (PRISM/PRIME, MECO)
- Sensitive to non-photonic process

- $\mu \rightarrow e \gamma$ (MEG)
- $B(\mu \rightarrow e \gamma) = 200 \times B(\mu N \rightarrow e^-N)$ for photonic process

- μ^- beam $< \mu^+$ beam
- No accidental backgrounds
- beam
- Surface muon beam exists
- Accidental background dominates
- Requires "state-of-the-art" muon Pequires "state-of-the-art" Detector beam Different Experimental Techniques

Both are "must do" to maximize potential discovery 24-28 October, 2005

Backgrounds in $\mu N \rightarrow e^{-}N$

- No accidental backgrounds
- Radiative pion capture
 - Must suppress pions in beam
- Muon Decay in Orbit
 - $E_{\text{max}} = E_{\text{LFV}} \propto (E_{\text{LFV}} E_{\text{MDO}})^5$
 - $N_{bg} = 0.25$ for $R_{\mu e} = 10^{-18}$
 - ΔE_e =500 keV FWHM given by ΔE uncertainty in muon stopping target

24-28 October, 2005

PANIC'05

PRISM/PRIME for $\mu^- N \rightarrow e^- N$

A good beam is essential for a good $\mu^- N \rightarrow e^- N \exp$.

- High muon intensity
 - More than $10^{12} \mu^{-}/\text{sec}$
- Pulsed beam
 - Rejection of background coming from proton (mostly pions)

- Thinner muon-stopping target
- Thus, better e⁻ momentum/energy resolution while keeping muon stopping efficiency
- keeping muon stopping efficiency
- Less beam contamination
 - Practically no pion contamination $\pi/\mu \sim 10^{-18}$

PRISM

Phase-Rotated Intense Slow Muon source

- High Intensity
 - 10^{11} - $10^{12} \mu^{\pm}/\text{sec}$
- High Brightness
 - ±0.5 ~ 1.0 MeV
- High Purity
 - $\pi/\mu \sim 10^{-18}$
- Low Energy
 - 20 MeV (68 MeV/c)
- Pulsed
 - 100 Hz

What is the Phase-Rotation

24-28 October, 2005

PANIC'05

11

PRIME PRIsm Muon-Electron conversion

- Utilizes the advantage of PRISM Beam
 - Hight Intensity, High Brightness, High Purity
 - Pulse Frequency: 100 Hz
 - Pulse Duration: 200 ns
 - → Instantaneous Rate: 10¹⁰ muons/sec
- Unwanted particles must be physically suppressed.
 - → Curved-Solenoid Muon Transport (from MECO)

24-28 October, 2005 PANIC'05 12

Spiral Solenoid Spectrometer

Vertical drift of charged particles in torus

magnetic field
$$1 \quad s \quad (p_l^2 + \frac{1}{2}p_t^2)$$
B: magnetic field B: magnetic field s/B: bending and series s

 $\overline{0.3B}$ R

s/R: bending angle

pl: longitudial momentum

pt: transverse momentum

Sensitivity

- Proton Driver: 0.75 MW
- Muon yield depends on technology choice in pion capture section, such as target material, magnetic field strength: typically 0.3 ~ 2 × 10¹¹ μ⁻/sec
- PRIME acceptance: 40%
- A few nominal years (several 10⁷sec) of run
- Single Event Sensitivity ~10⁻¹⁸

Conclusion

- μ -e Conversion is very important.
- Super muon beam, PRISM, for μ -e Conversion.
- The experiment that utilizes PRISM beam, PRIME, could search for μ -e conversion down to 10^{-18} level.

Come to join us

24-28 October, 2005 PANIC'05 15